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The hydrogen bond has long been recognized as an important type of

intermolecular interaction. Its infrared (IR) spectroscopic signature is the shift to
lower frequency and the increase in intensity of the A E H stretching band upon

formation of the A E H I B hydrogen bond. Ab initio calculations carried out with

an appropriate wavefunction model and basis set, and using the harmonic
approximation, can reasonably reproduce the shift of the A E H stretching band

upon hydrogen bonding, if the equilibrium structure exists in a relatively deep

potential well on the surface, so that both the v = 0 and the v = 1 vibrational states
of the proton-stretching mode are con® ned within this well. However, if the

equilibrium structure is found in a region of the surface which is broad and

relatively ¯ at, or if a second region of the surface can be accessed in either the
v = 0 or the v = 1 vibrational state of the proton-stretching mode, then the

harmonic approximation fails to describe the anharmonicity inherent in the

surface. For such complexes, experimental gas-phase structures and experimental
IR spectra obtained in low-temperature rare-gas matrices may give con¯ icting

descriptions of the hydrogen bond, and discrepancies will exist between experi-

mental and computed harmonic IR spectra. Anharmonic frequencies for both
fundamental and combination bands are needed to understand and reproduce

qualitatively the most important features of the experimental spectra. In this

article, an overview of the calculation of anharmonic frequencies is presented, and
results of one- and two-dimensional anharmonic treatments of vibration are

reported for a variety of hydrogen-bonded complexes. Computed frequencies are

compared with experimental gas-phase frequencies when these are available, and
with experimental frequencies obtained in low-temperature rare-gas matrices.
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1. Introduction

The hydrogen bond has long been recognized as an important type of inter-

molecular interaction, which dramatically in¯ uences the properties of chemical and

biochemical systems (Pimentel and M cClellan 1960). Long before the hydrogen bond

was recognized and given a name, it was observed experimentally through measure-

ments of anomalous physical and thermodynamic properties. One property tra-

ditionally associated with the presence of a hydrogen bond is the shift in the infrared

(IR) spectrum of the A E H stretching band upon formation of the A E H I B hydrogen

bond. This shift and the increase in intensity of the A E H stretching band provide

experimental evidence for the existence of a hydrogen bond and are so characteristic

that they have become its spectroscopic signature.

Formation of a hydrogen-bonded complex converts three degrees of translational

freedom and three degrees of rotational freedom (assuming nonlinear molecules) into

six new intermolecular vibrational modes, including the intermolecular stretching

mode (the `dimer ’ stretch), and the hydrogen bond bending mode. The intermolecular

modes usually have low frequencies, often below 400 cm -
" . In a typical complex, the

intramolecular modes are only slightly perturbed by hydrogen bond formation. The

exception, of course, is the shift of the A E H proton-stretching mode to lower frequency

in a complex containing an A E H I B hydrogen bond. It is the characterization of this

mode which will be the major focus of this article.
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Vibrational spectroscopy of the hydrogen bond 121

Ab initio theoretical studies of the hydrogen bond began to appear in the late 1960s

and early 1970s (Morokuma and Pedersen 1968, Kollman and Allen 1969, 1972,

M orokuma and W inick 1970, Del Bene and Pople 1970, Hankins et al. 1970). These

early studies were carried out in the context of single-determinant Hartree± Fock

theory using small basis sets. Geometry optimization to determine the structure of a

hydrogen-bonded complex was usually done by freezing monomer geometries, that is

the geometries of the proton donor and proton acceptor species, and optimizing only

the intermolecular coordinates. The optimization scheme was essentially done by

hand, varying each intermolecular coordinate in turn cyclically and independently,

until changes in these coordinates were less than some prede® ned threshold. At

convergence, the binding energy of the complex was computed as the diŒerence

between the total energy of the complex and the sum of the energies of the respective

monomers. IR spectral data were not computed.

A major breakthrough in ab initio studies of isolated molecules and hydrogen-

bonded complexes occurred when techniques were developed for evaluating ® rst and

second derivatives of the energy with respect to the nuclear coordinates. These

derivatives were ® rst evaluated numerically, and later analytically (Pople et al. 1979,

Schlegel 1982, 1994, Schlegel et al. 1984, Fogarasi and Pulay 1984, Pulay 1987,

Dykstra et al. 1990, Bartlett et al. 1991, Gauss and Cremer, 1992) and the algorithms

for doing this have been incorporated into ab initio software packages. As a result,

automated full geometry optimizations are now routine. The same techniques can be

used to compute vibrational spectra within the harmonic approximation.

2. Calculation of harmonic vibrational frequencies

The equilibrium structure of a hydrogen-bonded complex lies in a global minimum

on the potential energy surface. This minimum is probed experimentally through

vibrational IR spectroscopy and can be described theoretically by ab initio

calculations. These calculations are usually carried out in the harmonic approxi-

mation, which means that the surface in the vicinity of the energy minimum is ® tted by

functions containing only a quadratic dependence of the energy on the nuclear

coordinates, higher terms in the Taylor expansion being neglected. The vibrational

problem is routinely solved using the GF matrix formulation (Wilson et al. 1955). The

vibrational wavefunction can be expressed as a direct product of harmonic oscillator

functions, one for each normal coordinate. Normal coordinates are linear com-

binations of mass-weighted Cartesian displacement coordinates, and this often

complicates their description in terms of simple stretches and bends. However, in a

hydrogen-bonded complex the proton-stretching mode is often essentially a pure A E H

stretch, perturbed by the presence of the A E H I B hydrogen bond, and occurring at a

lower frequency than the monomer A E H stretch. The total vibrational energy of the

system is simply the sum of the vibrational energies of the harmonic oscillators.

In the harmonic approximation, the total energy of the optimized structure of a

molecule or complex consisting of N atoms can be written as (Hehre et al. 1986)

E = T 1 V =
1

2
3
$

N

i =
"

qd #i 1 Veq 1 3
$

N

i =
"

¦ V

¦ q i

1
1

2
3
$

N

i =
"

3
$

N

j =
"
0 ¦ # V

¥ q i ¦ q j
1

eq

q i q j ,

where mass-weighted Cartesian displacements qi are de® ned in terms of the locations

x i of the nuclei relative to their equilibrium positions x i , eq and their masses M i :

q
i
= M "

/
#

i
(x

i
–x

i , eq
),

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



122 Janet E . Del Bene and M eredith J. T. Jordan

V
eq

is the potential energy at the equilibrium nuclear con ® guration, and the expansion

has been truncated at second order. For such a system, the classical-mechanical

equations of motion are

qX j
= – 3

$
N

i =
"

f
ij

q
i
, j = 1, 2, I , 3N ,

where f
ij

are the quadratic force constants, which are the second derivatives of the

potential energy with respect to mass-weighted Cartesian displacements, evaluated at

the equilibrium nuclear con® guration :

f
ij

= 0 ¦ # V

¦ q
i ¦ q

j
1

eq

.

Solution of the equations of motion yields a set of 3N –6 (3N –5 for linear systems)

normal-mode vibrational frequencies.

In the Taylor series expansion of the potential energy, the ® rst derivative term of

the energy with respect to the nuclear coordinates is zero, since the equilibrium

structure is a stationary point on the potential energy surface. As a consequence, the

calculation of the vibrational spectrum of a molecule or complex must be performed

at the same level of theory (wavefunction model and basis set) used for geometry

optimization. The computed harmonic spectrum depends on the nature of the

equilibrium structure, and therefore on the method used to compute this structure.

This methodological dependence will be discussed below.

In the harmonic approximation, terms in the Taylor series expansion of the

potential higher than second order are neglected. There are several important

consequences of this approximation.

(1) The potential energy surface near the minimum is described by a set of

orthogonal parabolic curves, one for each normal coordinate.

(2) The energy levels for each normal mode are equally spaced, with the vibrational

energies given as

E
i
= 0 n 1

1

2 1 hc x i
for n = 0, 1, 2, ¼ ,

with x i
the vibrational frequency (expressed in reciprocal centimetres) of a

normal mode.

(3) The computed vibrational frequencies are usually too high relative to

experiment, independent of the level of theory used for the calculation. This is

due to the anharmonicity of the potential energy surface, described by the

higher-order terms in the Taylor expansion which are neglected in the harmonic

approximation.

(4) The selection rule for vibrational excitation is D n = 1 1. The frequency of the

n = 0 ! n = 1 vibrational excitation is referred to as the fundamental

frequency. W ithin this approximation there are no overtone or combination

bands in the spectrum.
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Vibrational spectroscopy of the hydrogen bond 123

(5) Intensities are computed from the derivatives of the dipole moment vector with

respect to the normal coordinates (Yamaguchi et al. 1986). The intensity A
i
for

absorption for a particular normal mode is

A
i
=

N p

3c # 0 ¦ l

¥ q
i
1 #

,

where N is Avogadro’ s constant, c is the speed of light and q
i

is the normal

coordinate of the ith mode.

How well does a parabolic description of a normal mode describe a minimum on

a potential energy surface along this coordinate ? If the minimum is deep and the

displacement from equilibrium during the vibration is small, then approximating the

minimum by a parabola should be reasonable. Harmonic frequencies computed for a

set of diatomic molecules at the Hartree ± Fock level with the 6-31G(d) basis set were

found to be about 11 % too large (Hehre et al. 1986). The errors in the computed

frequencies arise from two sources : ® rstly the steepness of the Hartree ± Fock potentials

and secondly the neglect of anharmonicity. Potentials computed with electron

correlation eŒects included are softer, so that the frequencies for the same set of

molecules obtained at second-order M ù ller± Plesset theory (MP2 } 6-31G(d)) (Pople et

al. 1976, Bartlett and Silver 1975) are improved, overestimating experimental values

by 4.6 % (Hehre et al. 1986). Further improvement can be obtained by using higher

levels of correlation, such as coupled-cluster methods (Purvis and Bartlett 1982,

Urban et al. 1985, Raghavachari et al. 1989, Bartlett 1989, Bartlett et al. 1990, W atts

et al. 1993) with larger basis sets. However, the errors which remain in these treatments

are inherent to the harmonic approximation and its neglect of the anharmonicity of

the potential energy surface. Can the harmonic approximation be expected to describe

adequately the A E H stretching frequency in a hydrogen-bonded complex ? Or can the

harmonic approximation at least give reliable frequency shifts upon hydrogen

bonding? These questions will be addressed in the following sections.

3. M ethodological dependence of structures and harmonic spectra of hydrogen-

bonded complexes

The computed harmonic vibrational spectrum of a complex is dependent on the

description of the potential energy surface, in terms of both the nature of the

equilibrium structure, and the depth and curvature of the potential well along each

normal coordinate. Two structural features strongly in¯ uence the computed IR

spectrum, namely the intermolecular (hydrogen bond) A ± B distance, and the change

in the A E H bond length relative to the A ± H distance in the isolated proton-donor

molecule. Since there is a methodological dependence of the computed structure of a

hydrogen-bonded complex (Del Bene et al. 1995, Del Bene and Shavitt 1997), it is

important to identify at which levels of theory reliable structures can be obtained.

These structures can be judged by applying two criteria. The ® rst is convergence with

respect to further extension of the methodology. This means that the computed

structure will not signi® cantly change when recomputed using a more sophisticated

wavefunction or a larger basis set. The second criterion is comparison of converged

structures with reliable experimental data. Applying these criteria makes it possible to

identify that level of theory required to give reliable structures at minimum

computational expense.

Comparison of computed and experimental distances must be done with care. The
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124 Janet E . Del Bene and M eredith J. T. Jordan

Table 1. Water dimer intermolecular distance R
e

and electronic binding energy D E
e

at

various levels of theory. DZP, double zeta plus polarization; VDZ, explained in the text ;

QCISD, quadratic con® guration interaction with single and double excitations; CCSD,
coupled cluster with single and double excitations; CCSD(T), coupled cluster with

single and double excitations with perturbative triples ; TZ2P, triple zeta plus double

polarization. Hartree± Fock (HF), Mù ller± Plesset second order (MP2) and con ® guration
interaction with single and double excitations (CISD) results with basis sets derived from

6-31G and 6-311G are taken from the work of Frisch et al. (1986). The binding energies

were computed at the same level of theory used for structure optimization.

Method Basis set

R
e

(A)

D E
e

(kcal-
" mol-

" )

HF STO-3G 2.740 –5.9
3-21G 2.797 –11.0
6-31G(d) 2.971 –5.6
6-31G(d, p) 2.980 –5.5
DZP 2.986 –5.0
6-31 1 G(d) 2.964 –5.4
6-31 1 1 G(d) 2.959 –5.4
6-31 1 G(d, p) 2.988 –5.0
6-31 1 1 G(d, p) 2.987 –5.0
6-311 1 G(d, p) 2.999 –4.8
6-311 1 1 G(2d, 2p) 3.035 –4.1
11 1 7 1 (2d, 2p) 3.033 –3.9
6-311 1 1 G(3df, 3pd) 3.026 –4.0

MP2 3-21G 2.802 –12.7
6-31G(d) 2.913 –7.4
6-31G(d, p) 2.910 –7.1
DZP 2.909 –6.3
6-31 1 G(d) 2.901 –7.1
6-31 1 1 G(d) 2.895 –7.2
6-31 1 G(d, p) 2.914 –6.5
6-311 1 G(d, p) 2.908 –6.1
6-311 1 1 G(d, p) 2.910 –6.1
6-311 1 1 G(2d, 2p) 2.911 –5.4
cc-pVDZ 2.908 –7.5
aug´-cc-pVDZ 2.923 –5.2
aug´-cc-pVTZ 2.909 –5.0

CISD 6-31G(d) 2.937
6-31 1 G(d) 2.920

QCISD 6-31 1 G(d, p) 2.939 –6.0
aug´-cc-pVDZ 2.954 –4.9

CCSD aug´-cc-pVDZ 2.953 –4.9
CCSD(T) DZP 2.922 –6.1a

TZ2P 2.914 –5.4a

aug´-cc-pVDZ 2.948 –5.1

a From Kim et al. (1995).

intermolecular distance measured experimentally is the average distance R
!

in the

ground vibrational state. W hat is computed is the intermolecular distance R
e

at the

bottom of the potential well. The methodological dependence of the computed

intermolecular distance is illustrated by the O ± O distances in the water dimer, which

are reported in table 1. These data show signi® cant variation, with R
e

ranging from

2.740 A/ at the single-determinant Hartree ± Fock level with the minimal STO-3G

basis set, to 3.035 A/ at Hartree± Fock with the 6-311 1 1 G(2d, 2p) basis set. The
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Vibrational spectroscopy of the hydrogen bond 125

Table 2. The intermolecular O± O distance in the water dimer obtained from high-level

ab initio calculations (Xantheas and Dunning 1993, 1998, Feller et al. 1994) : MP4,

M ù ller± Plesset fourth-order.

O± O distance (A/ )

Basis set HF MP2(fc) MP2(fu) CCSD CCSD(T) MP4(fc) MP4(fu)

aug-cc-pVDZ 3.030 2.916 2.911 2.944 2.925 2.921 2.917

aug-cc-pVTZ 3.039 2.907 2.889 2.933 2.914 2.912 2.892
aug-cc-pVQZ´ 3.037 2.907 2.932 2.913 2.912

aug-cc-pVQZ 3.036 2.903

aug-cc-pV5Z 2.905

experimental O ± O distance R
!

in the water dimer is 2.976 A/ . Corrected for

anharmonicity, the intermolecular distance R
e

is estimated to be 2.946 A/ (Dyke and

M uenter 1973, Dyke et al. 1977, Odutola et al. 1979). Analysis of the data in table 1

shows that water dimer structures optimized at the Hartree± Fock level with all the

augmented split-valence basis sets (i.e. all basis sets except STO-3G and 3-21G) have

O ± O distances that are too large. At the Hartree ± Fock level the best agreement

between theory and experiment is obtained at HF } 6-311 1 1 G(d) with R = 2.959 A/ .

Unfortunately, this is not a converged Hartree± Fock value, since further expansion of

the basis sets leads to poorer results. Including electron correlation eŒects reduces the

computed O± O distance and its variation with basis set. At the M P2 level the

intermolecular O ± O distance appears to be underestimated by 0.023± 0.051 A/ relative

to experiment.

Xantheas and Dunning (1993, 1998) have undertaken a very systematic and

comprehensive study of the structure of the water dimer using various wavefunction

models and Dunning’ s augmented correlation-consistent split-valence basis sets aug-

cc-pVXZ, where X = D for double, T for triple, Q for quadruple and 5 for quintuple

split (Dunning 1989, Kendall et al. 1992, W oon and Dunning 1993). These basis sets

are ideally suited to convergence studies, since they have been constructed very

systematically, based on calculations that included electron correlation eŒects. The

intermolecular O ± O distance in the water dimer computed with these basis sets at

Hartree± Fock and diŒerent correlation levels are reported in table 2. At the

Hartree± Fock level, the O ± O distance in the water dimer is predicted to be 3.03 A/ ,

signi® cantly longer than the experimental distance. Calculations including electron

correlation eŒects yield signi® cantly shorter O ± O distances. At correlated levels,

increasing the basis set from aug-cc-pVDZ to aug-cc-pVTZ leads to small changes of

0.01 or 0.02 A/ in the O ± O distance. Further extension of the basis set has essentially

no eŒect on the computed distance. The most extensive electron correlation treatment

(CCSD(T) with the aug-cc-pVQZ´ basis set, where aug-cc-pVQZ´ is aug-cc-pVQZ

without f functions on hydrogen atoms) leads to a computed intermolecular distance

of 2.913 A/ . Thus, the computed distances appear to converge to about 2.91 A/ , with all

the calculated distances being within 0.02 A/ of this value. This value is signi® cantly

shorter than the estimated experimental intermolecular O ± O distance (R
e

= 2.946 A/ ).

In (H
#
O)

#
the O ± O distance corresponds to a loosely bound mode, and vibrational

averaging in the ground state may in¯ uence its length. Thus, the discrepancy between

theory and experiment may be a manifestation of the anharmonicity in the

intermolecular potential along this coordinate (see below).
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126 Janet E . Del Bene and M eredith J. T. Jordan

The levels of structure optimization carried out by Xantheas and Dunning for the

water dimer are computationally demanding and not feasible for routine studies of

hydrogen-bonded complexes. Is there a lower level of theory which can consistently

predict reasonable intermolecular distances and vibrational frequency shifts, and

which can be applied routinely to larger 1 : 1 complexes ? Table 3 presents computed

intermolecular distances for a set of nine complexes for which experimental data are

available. These calculations were carried out at Hartree± Fock and at the correlated

M P2 level with two diŒerent basis sets, 6± 31G(d) and 6± 31 1 G(d, p) (Hehre et al.

1972, Hariharan and Pople 1973, Spitznagel et al. 1982, Clark et al. 1983). The ® rst

basis set is a split-valence basis set with a set of d polarization functions on non-

hydrogen atoms, a basis often used in studies of the structures and vibrational spectra

of isolated monomers. The second basis is slightly larger, with ® rst polarization

functions on all atoms, and diŒuse functions on non-hydrogen atoms. DiŒuse

functions are required to better describe the non-bonded electrons on B in the

A E H I B hydrogen bond, and have important structural and energetic eŒects, as

evident from tables 1 and 3. Several generalizations relating to intermolecular

distances can be made from the data of table 3.

(1) Intermolecular distances computed at the Hartree ± Fock level can be signi® -

cantly diŒerent from experimental distances. Hartree± Fock distances are

usually too long, often by more than 0.1 A/ . The overestimation of the inter-

molecular distance in hydrogen-bonded complexes has severe consequences

relative to the nature of the intermolecular hydrogen bonding surface. In

particular, at the longer distances, double minima may appear in the curve for

proton transfer. These double minima disappear at correlated levels of theory

(Latajka et al. 1984, 1987, 1992, Del Bene 1998).

(2) The equilibrium HF } 6-31G(d) and M P2 } 6-31G(d) structures of (HF)
#

are

cyclic, in contrast with the open structure found experimentally and computed

at higher levels of theory.

(3) In contrast with the water dimer where distances computed at M P2 with

various augmented split-valence basis sets are similar, intermolecular distances

computed at MP2 } 6-31G(d) and M P2 } 6-31 1 G(d, p) may be diŒerent. When

signi® cant diŒerences are found, the M P2 } 6-31 1 G(d, p) distances are in

better agreement with experimental data.

The weight of evidence suggests that Hartree ± Fock calculations are not ap-

propriate if reliable structures and potential energy surfaces for hydrogen-bonded

systems are needed. The inclusion of electron correlation eŒects, at least at the level of

M P2, is absolutely essential. It also appears that diŒuse functions must be included in

the basis set, so that M P2 } 6-31G 1 G(d, p) appears to be the minimum level of theory

required for reliability. The data in table 3 suggest that, at this level, computed

intermolecular distances agree with experimental distances to about 0.03 A/ . W hether

this is acceptable agreement will depend upon the particular application.

Computed harmonic and experimental frequency shifts of the A E H stretching

band are also reported in table 3. Hartree± Fock frequency shifts computed with a

given basis set are smaller than M P2 shifts computed with that same basis set and are

usually too small relative to experimental shifts. As noted above, the steepness of

Hartree± Fock potentials leads to underestimation of the lengthening of the A E H bond

and the shift of the A E H stretching frequency. The softer M P2 potentials allow for a

greater increase in the A E H bond and decrease in the A E H stretching frequency. For
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Vibrational spectroscopy of the hydrogen bond 127

Table 3. Intermolecular distances R and A E H vibrational frequency shifts d v in hydrogen-

bonded complexes. Data for complexes of HF and HCl with HCN and CH
$
CN were

taken from Del Bene (1992) and MP2 } 6-31 1 G(d, p) data for other complexes from Del
Bene et al. (1995).

Complex
HF }

6-31G(d)
HF }

6-31 1 G(d, p)
MP2 }

6-31G(d)
MP2 }

6-31 1 G(d, p) Experimenta

FH I NCH

R (A/ ) 2.923 2.900 2.875 2.808 2.805b

d m (cm -
" ) 106 176 119 262 245 (v)c

FH I NCCH
$

R (A/ ) 2.878 2.850 2.835 2.758
d m (cm -

" ) 146 234 162 343 334 (v)c , d

ClH I NCH

R (A/ ) 3.498 3.522 3.380 3.376 3.402e

d m (cm -
" ) 73 68 126 113 79 (v)f

ClH I NCCH
$

R (A/ ) 3.434 3.462 3.324 3.316 3.291e

d m (cm -
" ) 110 103 173 167 155 (v)g

FH I CO

R (A/ ) 3.145 3.198 3.080 3.062 3.047h

d m (cm -
" ) 37 75 55 134 117 (v)i , j

ClH I OH
#

R (A/ ) 3.242 3.288 3.152 3.185 3.215k

d m (cm -
" ) 163 121 276 177 207 (Ar)f

ClH I ClH

R (A/ ) 4.132 4.139 3.913 3.868
d m (cm -

" ) 13 14 28 32 53 (Ar)f

FH I FH

R (A/ ) 2.596 l 2.811 2.535l 2.777 2.79m

2.72 ‰0.03n

d m (cm -
" ) 89 116 93 (v)o

HOH I OH
#

R (A/ ) 2.972 2.989 2.914 2.914 2.946p

d m (cm -
" ) 42 50 67 79 64 (Ar)q

a Experimental vibrational data are shifts to lower frequencies from either vapour (v) or

argon matrix (Ar) data.
b From Legon and Millen (1986).
c From Woodford et al. (1986, 1987a,b).
d From Legon et al. (1987).
e From Legon and Millen (1988).
f From Barnes (1983).
g From Ballard and Henderson (1991).
h From Legon et al. (1981).
i From Kyro et al. (1983).
j From Jucks and Miller (1987).

k From Legon and Millen (1992).
l The computed structure is cyclic with a short F± F distance.

m From Dyke et al. (1969).
n From Quack and Suhm (1991).
o From Pine and LaŒerty (1983).
p From Dyke and Muenter (1973) ; Dyke et al. (1977) and Odutola et al. (1979).
q From Engdahl and Nelander (1989).
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128 Janet E . Del Bene and M eredith J. T. Jordan

the seven complexes listed in table 3 for which vapour-phase experimental data are

available, the computed A E H frequency shifts at M P2 } 6-31 1 G(d, p) overestimate the

experimental data, with the largest diŒerence of 33 cm -
" occurring for ClH I NCH.

W hen the experimental data are taken from argon matrix measurements, the computed

M P2 } 6-31 1 G(d, p) shifts for ClH I OH
#

and (HCl)
#

are too small by 30 and 21 cm -
"

respectively. Overall, however, the agreement is reasonable, and M P2 } 6-31 1 G(d, p)

has been recommended as the minimum level of theory required for computing A E H

frequency shifts in 1 : 1 hydrogen-bonded complexes (Del Bene and Shavitt 1997).

However, there are two observations that can be made at this point, both of which will

be discussed in detail below.

(1) All the complexes in table 3 have traditional hydrogen bonds.

(2) The argon matrix can have an eŒect on the experimental IR spectrum.

4. Hydrogen bond type and shifts in harmonic vibrational frequencies

The A E H I B hydrogen bond between a pair of neutral molecules is a traditional

hydrogen bond if the A E H covalent bond remains essentially intact in the complex.

However, proton transfer may occur, giving rise to the hydrogen-bonded A - I + H E B

ion pair. In principle there is nothing to limit the hydrogen bond to one of these two

extremes. It was suggested over two decades ago that quasisymmetrical or proton-

shared A I H I B hydrogen bonds may exist in certain complexes formed in low-

temperature matrices or in the gas phase. The range of hydrogen bond types has been

investigated recently in a systematic ab initio study of three series of hydrogen-bonded

complexes formed between the hydrogen halides HX (X = F, Cl or Br) and a set of 4-

substituted pyridines (4-R-pyridine) (Del Bene et al. 1996). Table 4 reports M P2 } 6-

31 1 G(d, p) structural and spectral data for the complexes with HCl, and ® gure 1

shows the computed spectra of the HCl : 4-R-pyridine complexes. The listing of the

substituted pyridines in table 4 and ® gure 1 is in the order of increasing proton a� nity

of the substituted pyridine.

The HCl :4-R-pyridine complexes with R = CN, F, Cl, H, CH
$

or NH
#

are

complexes with traditional linear Cl E H I N hydrogen bonds. These complexes have

intermolecular distances that range from 3.105 A/ in HCl : 4-CN-pyridine, the complex

with the weakest hydrogen bond, to 3.002 A/ in HCl : 4-NH
#
-pyridine, which has the

strongest bond. The Cl± H distance in each complex is greater than the monomer

distance of 1.270 A/ and increases with increasing hydrogen bond strength and

decreasing intermolecular distance. Figure 1 shows that these complexes exhibit a

single strong perturbed H E Cl stretching band in the IR spectrum. The computed

intensities of this band are about two orders of magnitude greater than the intensity of

the monomeric H E Cl stretch. Figure 1 also shows the correlation between the

frequency shift of the Cl E H stretching band and increasing binding energy of the

complex.

In contrast with the ® rst six complexes in this series which have traditional

hydrogen bonds, the complexes HCl :4-Li-pyridine and HCl : 4-Na-pyridine have

proton-shared Cl I H I N hydrogen bonds. These are characterized by short Cl± N

distances of 2.912 and 2.826 A/ respectively and long H± Cl distances of 1.632 and

1.670 A/ respectively. As the structures of these complexes change, so do their

computed vibrational spectra. In contrast with the single strong proton-stretching

band predicted for complexes with traditional hydrogen bonds, the complexes with
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Vibrational spectroscopy of the hydrogen bond 129

Table 4. Selected computed properties of ClH : 4-R-pyridine complexes

R
Proton a� nitya , b

(kcal mol-
" )

D E
e

c

(kcal mol-
" )

m (HCl)
(cm -

" )
A (HCl)

(km mol-
" )

R (Cl > H)
(A/ )

R (N > H)
(A/ )

R (Cl > N)
(A/ )

CN 210.4 (210.3) 9.2 2524 2315 1.309 1.796 3.105

F 217.0 (216.6) 10.0 2434 2458 1.316 1.759 3.075
Cl 218.4 (217.8) 10.0 2428 2658 1.316 1.758 3.074

H 220.0 (220.8) 10.7 2324 2844 1.323 1.721 3.044

CH
$

225.8 (225.2) 11.1 2271 3211 1.327 1.703 3.030
NH

#
233.5 (230) 11.7 2156 3665 1.336 1.667 3.002

m (HB st)
(cm -

" )
A (HB st)

(km mol-
" )

Li 246.6 14.5 1296 3769 1.632 1.280 2.912

877 1929
601 1501

Na 251.3 15.7 1465 4928 1.670 1.156 2.826

935 1291
599 539

m (NH)
(cm -

" )
A (NH)

(km mol-
" )

S - 323.2 32.7 2636 5530 1.889 1.068 2.958
O - 333.3 39.0 2826 3799 1.939 1.057 2.996

a Experimental proton a� nities D H # * ) are given in parentheses and are based on data taken

from Lias et al. (1988).
b MP2 } 6-31 1 G(d, p) proton a� nities are not usually quantitatively accurate, but for the

4-R-pyridines they are within 1 kcal mol-
" of the experimental values, except for X = NH

#
.

c D E
e

is the electronic binding energy of the complex.

proton-shared hydrogen bonds exhibit multiple strong bands in the IR spectrum

between 600 and 1700 cm -
" . The strongest band is dramatically shifted by 40 ± 60 %

relative to the HCl monomer, and all bands have signi® cantly increased intensities.

The normal coordinate analysis shows that these bands are not simple perturbed Cl E H

stretches but involve coordinated motion of the hydrogen-bonded chlorine, hydrogen

and nitrogen atoms. How do these bands arise ?

In complexes with proton-shared hydrogen bonds, the H E Cl bond is signi® cantly

lengthened and weakened. As a result, the H E Cl stretching force constant is reduced,

and this leads to a dramatic reduction in the H E Cl stretching frequency. If the H E Cl

stretching band is shifted into a region where the pyridine molecule absorbs, then

coupling of the HCl stretch and pyridine vibrational modes can occur provided that

these modes have the same symmetry (a
"

in C
#

v
). The relatively weak intramolecular

modes in pyridine may then borrow intensity from the H E Cl stretching mode, with the

result that several strong bands appear in the spectrum, with frequencies and

intensities dependent on the extent of local oscillator coupling. This is an important

observation since it demonstrates that it is not necessary to invoke the existence of

double minima along the proton transfer coordinate in order to explain multiple

strong bands in the experimental vibrational spectra of some hydrogen-bonded

complexes. There are no double minima along this coordinate in any of the complexes

of HCl with the 4-R-pyridines.

Substitution of S - and O - in the 4 position of pyridine so increases the base
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130 Janet E . Del Bene and M eredith J. T. Jordan

Figure 1. The computed spectra of ClH : 4-R-pyridine complexes. Except for the pyridine modes

which couple to the motion of the hydrogen-bonded proton, the bands of the substituted
pyridine are not visible on this scale. (From Del Bene et al. (1996).)

strength that proton transfer occurs. The computed vibrational spectra of the resulting

hydrogen-bonded ion pairs again have single strong bands. However, the motion of

the proton in these complexes is better described as a perturbed N E H stretching

motion in an N E H + I Cl- hydrogen bond. The strong bands in the complexes ClH :4-

S - -pyridine and ClH : 4-O - -pyridine are found at 2636 and 2826 cm -
" , and are shifted

to lower frequency by about 1050 and 900 cm -
" respectively relative to the corres-

ponding pyridinium ions. The magnitude of these shifts is comparable with shifts of

the HCl band in complexes with traditional Cl E H I N hydrogen bonds.

The relationship between the computed structure of a hydrogen-bonded complex

and its computed harmonic spectrum is evident from the HX :4-R-pyridine complexes.

Complexes with traditional hydrogen bonds have computed harmonic spectra typical

of this structure type, while complexes with proton-shared hydrogen bonds have

dramatically diŒerent spectra, exhibiting multiple low-frequency strong bands. The

computed results also demonstrate important relationships among properties such as

the proton a� nity of the substituted pyridine, the binding energy of the complex, the

intermolecular distance, the X ± H distance in the complex and the frequency shift of

the X E H band. However, while the computed results for the HX : 4-R-pyridine

complexes are internally consistent, there is a problem. Comparison of the computed

harmonic spectra of these complexes with experimental spectra indicates that proton-

shared hydrogen bonds appear earlier in the series experimentally (i.e. at lower proton

a� nity of the base) than predicted from the calculations. For example, HCl :pyridine

has an experimental spectrum typical of complexes with proton-shared hydrogen

bonds, (W. B. Person and K. Szczepaniak 1997, private communication) but the

computed spectrum of this complex is that of a complex with a traditional hydrogen
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Vibrational spectroscopy of the hydrogen bond 131

bond. It should be noted that there is also an apparent discrepancy between

experimental structural and spectroscopic data for this same complex, since the

reported gas-phase structure of HCl : pyridine is also suggestive of a traditional

hydrogen bond (Cooke et al. 1998). Similar discrepancies between experimental gas-

phase structure and experimental argon matrix spectra, and between experimental and

computed harmonic IR spectra, are found for the BrH :NH
$

complex (Del Bene et al.

1997a , Barnes and Legon 1998). In both cases, the computed M P2 } 6-31 1 G(d, p)

structures are in agreement with the experimental gas-phase structures, but the

computed harmonic IR spectra are drastically diŒerent from experiment. It does not

appear that the discrepancies between computed harmonic and experimental IR

spectra are due primarily to inadequacy of the MP2 } 6-31 1 G(d, p) level of theory,

since calculations done at higher levels of theory with larger basis sets yield essentially

the same results. W hat are the origins of these discrepancies ? There are two possible

causes : anharmonicity and a matrix eŒect.

5. Calculation of anharmonic frequencies

5.1. An o v er v iew of the calculation of v ibrational energy le v els

This section deals with the calculation of purely vibrational energy levels, that is

levels for which the total angular momentum of the system is zero (J = 0). There have

been a number of reviews of such methods (Handy 1989, Tennyson 1992, Csaszar and

M ills 1997) and only a brief theoretical overview will be provided here.

5.1.1. Coordinates

Regardless of the method used to calculate the vibrational eigenvalues, some

representation of the molecular potential energy surface is required. It is always

desirable to write the potential energy surface for a nonlinear N atom system in terms

of 3N –6 internal coordinates, with the choice of coordinates being appropriate for

the particular system. For a triatomic ABC molecule, the choices include the

following:

(a) the internal valence coordinates r
"
, r

#
and the included angle h (Carter and

Handy 1982) ;

(b) Jacobi, or scattering, coordinates R , r, h (Tennyson and SutcliŒe, 1985,

Bowman et al. 1989) ;

(c) hyperspherical coordinates for the stretching motions r
i

and u , together with

the bond angle h (Frey and Howard 1985, Zuniga et al. 1996) ;

(d ) symmetry coordinates r
"

1 r
#
, r

"
–r

#
, r

$
(Ishtwan and Collins 1991, Collins and

Parsons 1993) ;

(e) Radau coordinates (Johnson and Reinhardt 1986, Bac) ic! et al. 1988).

Curvilinear internal coordinates are preferable because they give a more accurate

representation of the potential energy surface (Hoy et al. 1972) and ensure that the

potential surface is invariant to rotation and translation (Ishtwan and Collins 1991).

For this latter reason, it is also desirable to write the kinetic energy operator in terms

of internal coordinates. Using the chain rule (with the aid of computer algebra

programs for larger systems) it is possible to derive the kinetic energy operator for any

well de® ned coordinate system (Handy 1987). For example, for a triatomic ABC
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132 Janet E . Del Bene and M eredith J. T. Jordan

molecule using the AB and BC bond lengths as r
"

and r
#

and the ABC included angle

as h , the kinetic energy operator may be written in atomic units as (Carter and Handy

1982) .

T = –
1

2 l
"

¦ #

¦ r #
"

–
1

2 l
#

¦ #

¦ r #
#

–
1

2 0 1

l
"

r #
"

1
1

l
#

r #
#

–
2 cos h

mB r
"

r
#
1

3 0 ¦ #

¦ h #
1 cot h

¦
¦ h 1 –

1

mB

sin h

r
"

r
#

¦
¦ h

1
cos h

mB

3 0 1

r
"

¦
¦ r

#

1
1

r
#

¦
¦ r

"
1 –

cos h

m
B

¦ #

¦ r
"
¦ r

#

1
sin h

m
B

¦
¦ h

3 0 1

r
"

¦
¦ r

#

1
1

r
#

¦
¦ r

"
1 –

cos h

m
B

r
"
r
#

1 V ,

where

1

l
"

=
1

m
A

1
1

m
B

,
1

l
#

=
1

m
B

1
1

m
C

,

and m
X

is the mass of atom X. Expressing the Hamiltonian in terms of internal

coordinates also facilitates the choice of appropriate basis functions, since the

wavefunction is better represented as a direct product of functions of the internal

coordinates than Cartesian coordinates. To minimize the computational eŒort

involved in obtaining the vibrational eigenvalues it is important to choose basis

functions which best approximate the exact wavefunction. The disadvantage of

internal coordinates is the complexity of the kinetic energy operator, as evidenced in

the above equation. This disadvantage may be minimized by choosing basis functions

for which the kinetic energy matrix elements may be computed analytically or with

minimum numerical eŒort. A further disadvantage is that the transformation from a

total of 3N coordinates to three translational, three rotational and 3N –6 internal

coordinates inevitably introduces singularities into the Hamiltonian. Thus, not all

choices of internal coordinates are actually usable, and it may be that no one

coordinate choice is appropriate for the range of atomic con ® gurations sampled in a

given problem (SutcliŒe and Tennyson 1991, Thompson et al. 1998). General solutions

to this problem have been proposed (Thompson et al. 1998), but these have yet to be

tested in the context of realistic vibrational calculations.

5.1.2. The potential energy surface

The most computationally viable method for obtaining a molecular potential

energy surface is to expand the surface as a power series about some equilibrium

con® guration. A Dunham (1932)-type representation is often used :

V = 3 c
abc

( D r
"
)a ( D r

#
)b ( D h )c

where D r
"
, D r

#
and D h are the bond length and bond angle changes with respect to

equilibrium. The potential energy is commonly represented by a Taylor series

expansion in normal coordinates (Papousek and Aliev 1984) or M orse coordinates

(Meyer et al. 1986). The expansion coe� cients are identi® ed as force constants, and
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Vibrational spectroscopy of the hydrogen bond 133

the force ® eld in which the atoms move can be obtained from ab initio calculations or

from experiment. The ab initio prediction of anharmonic force ® elds has been an active

research area for almost 20 years, fuelled by the development of analytic methods for

the evaluation of the derivatives of the potential energy surface (Botschwina 1979,

Bock et al. 1980, Botschwina and Sebals 1983, Pulay et al. 1983, Kondo et al. 1984,

Gaw and Handy 1985, 1986, Dunn et al. 1986, Bartlett et al. 1988, Gaw et al. 1988).

At present it is possible to calculate ab initio representations of the potential energy

surface through to fourth order using analytic techniques (Gaw and Handy 1985).

Sixth-order force ® elds have been calculated numerically for small molecules (Csaszar

1992, 1994). There is also an extensive literature relating to the experimental

calculation of anharmonic force constants (Mills 1972, 1974).

In principle it is possible to describe a global molecular potential energy surface

using a Taylor expansion about equilibrium. In practice, however, a satisfactory

method for extrapolating the potential to arbitrary molecular con® gurations has yet to

be found (Tennyson 1992). The alternatives are to investigate the chemically relevant

regions of the potential energy surface using an appropriate ab initio method and then

to ® t a suitable functional form (Truhlar 1981, M urrell et al. 1984) or to interpolate

among known data points (Jordan et al. 1995, Del Bene et al. 1997a) .

5.1.3. Perturbation theory

The simplest description of the low-lying vibrational states in bound molecules is

the harmonic approximation in which only a second-order Taylor expansion of the

potential is considered. M olecules are assumed to undergo small-amplitude motion

about some equilibrium geometry, and the vibrational wavefunctions are taken as

products of one-dimensional harmonic oscillators (Wilson et al. 1980). This simple

method is often extremely useful and can provide a qualitatively correct picture for

many molecules (Hehre et al. 1986, Bartlett and Stanton 1994). The simple harmonic

model can be improved using perturbation theory. In this approach, higher-order

terms in the Taylor expansion of the molecular potential energy surface are used to

correct the harmonic energy levels. The most commonly used perturbational method

is second-order vibrational perturbation theory (Papousek and Aliev 1984). In this

method, only quartic terms in the anharmonic force ® elds are required, and the

anharmonic corrections to the vibrational energy levels are relatively simple. It

is also possible to take into account the eŒects of cubic (Fermi) and quartic

(Darling± Dennison) resonances within the framework of the calculations. (For a

general discussion of the method see Csaszar and Mills (1997).) There are a number

of public domain computer programs that perform second-order vibrational pertur-

bation theory calculations. One of the most commonly used packages is SPECTRO

(Gaw et al. 1991), which has been used to study a wide range of small molecules (for

example Lee (1997)). A compilation of species for which full anharmonic (at least

quartic) force ® elds have been determined have also been provided (Csaszar and M ills

1997) .

The main advantage of the perturbative approach is that the information required

about the potential energy surface is limited. It is computationally much easier to

calculate even quartic force constants about equilibrium than to elucidate an entire

potential energy surface. The second-order vibrational perturbation theory method is

also much simpler and more tractable than a full variational method. However,

because perturbative methods rely on accurate expansions of the potential about

equilibrium, they are only appropriate for systems with well de ® ned minima. A
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134 Janet E . Del Bene and M eredith J. T. Jordan

perturbative approach is not appropriate when multiple minima exist on the potential

surface, or when the minimum is not well de® ned as, for example, in weakly bound

complexes (Handy 1989). Further, perturbative methods are not appropriate for cases

in which the amplitude of vibrational motion is large (Tennyson 1992). In particular,

the method is not appropriate for complexes with `¯ oppy ’ hydrogen bonds (LeRoy

and Carley 1980).

5.1.4. Variational methods

The variational method is the only method free from all the fundamental obstacles

to the accurate and general treatment of the vibrational problem. In this method the

potential energy surface is globally de® ned by some functional form V and some basis

set expansion is used. Typically, the wavefunction W is expanded as a direct product

of one-dimensional oscillator functions u in the internal coordinates q
i
:

W = 3 c
I U I

,

where

U I
= 0

$
N -

’

i

u Ii
(q

i
).

For example, in a triatomic system u (r
"
) and u (r

#
) may be Morse oscillator functions

and u ( h ) may be a Legendre function. The Hamiltonian matrix is then de® ned in terms

of the basis representation U I
as

H IJ = © U I r H r U J ª

and the vibrational energy levels are calculated as the eigenvalues of the secular

matrix :

© U I r H –W r U J ª = 0.

The resulting eigenvectors provide a representation of the vibrational wavefunctions

within the given basis set. Since the ith eigenvalue is an upper bound on the ith exact

eigenvalue (MacDonald 1933), it is possible to converge the vibrational states as the

number of basis functions is increased. This method has been labelled the ® nite basis

representation (FBR) (Bac) ic! and Light 1989). For a given basis set, the secular

(Hamiltonian) matrix elements are obtained by integrating over all coordinates. W hile

some of the required integrals may be analytic (depending on the choice of basis

functions and the form of the potential energy surface) many must be evaluated

numerically, typically using Gaussian quadrature.

5.1.5. Discrete v ariable representations

The discrete variable representation (DVR) is a ® nite-element method that has

been applied to the nuclear Schro$ dinger equation. The method has been extensively

developed in the context of rovibrational problems by Light and coworkers, and a

comprehensive review has been provided by Bac) ic! and Light (1989). A critique of

both the FBR and the DVR methods has also been provided by Tennyson (1992, and

references therein). A DVR is obtained from a corresponding FBR. Indeed, when

properly de® ned, DVRs and FBRs may be considered as equivalent pointwise and

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Vibrational spectroscopy of the hydrogen bond 135

spectral representations with orthogonal transformations between them, that is the

DVR and FBR matrices are isomorphic. For example, for a coordinate x associated

with an FBR u n
(x), n = 1, N , the one-dimensional DVR r x a ª , a = 1, N , is given by

r xa ª = 3
N

n =
"

T
nx u n

(x),

where T is the transformation matrix that diagonalizes the coordinate matrix X ,

expressed in the DVR representation :

XDVR = T t

X
XT

x

with X DVR diagonal. The eigenvalues x a , a = 1, N , of X , are the DVR grid points. If the

basis functions u n (x) are orthogonal polynomials, then the DVR points are the

Gaussian quadrature points for the polynomial basis functions (Bac) ic! and Light

1989). The fundamental assumption inherent in the DVR method is that the potential

matrix is diagonal. This approximation is based on the accuracy of Gaussian

quadrature. Thus, the DVR Hamiltonian may be easily constructed provided that the

basis set representation of the kinetic energy is simple. Basis functions are usually

chosen so that the kinetic energy matrix is no worse than tridiagonal (Wei and

Carrington 1992). Although the DVR method is not strictly variational, it has very

strong links with the basis set method discussed above and is subject to the same

pitfalls. Thus, the DVR method shall be considered a variational method.

The computational bottleneck in variational calculations is the diagonalization of

the secular matrix. Therefore, the number of basis functions used (the dimension of the

secular matrix) is critically important. Indeed, the major disadvantage of variational

methods lies in the fact that, as either the number of atoms or the maximum energy of

the eigenvalues increases, the number of basis functions becomes extremely large. (For

example, when the number of atoms changes from three to four, the wavefunction

becomes a direct product of six instead of three one-dimensional functions.) Further,

as the molecule becomes larger, it becomes more di� cult to choose appropriate

expansion functions for low-frequency vibrations such as angle bends and torsional

motions (Handy 1989).

There are, however, a number of promising avenues that have allowed variational

methods to be applied to larger systems and } or higher energies. These include the

following:

(a) the use of iterative diagonalization methods that allow very large basis sets to

be used without requiring the explicit storage of the Hamiltonian matrix ; these

techniques are variations of the Lanczos (1950) method (Cullum and

W illoughby 1985), which converges sparse regions of the spectrum toward

more dense regions and is particularly useful in determining low-energy

vibrational eigenvalues (Bramley and Carrington 1993, Antikainen et al.

1995) ;

(b) the use in denser regions of the spectrum of various ® ltering techniques which

are either time dependent (Feit et al. 1982, Neuhauser 1990, 1994, W all and

Neuhauser 1995) or time independent (Iung and Leforestier 1992, 1995, Kono

1993, Huang et al. 1994, 1996, Kouri et al. 1995, M andelshtam and Taylor

1995, M andelshtam et al. 1995, 1996, W yatt 1995 ; Chen and Guo 1996, Parker

et al. 1996, Smith 1996, Yu and Smith 1997) ;
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136 Janet E . Del Bene and M eredith J. T. Jordan

(c) basis set optimization, that is the optimization of a reduced set of equations

prior to coupling to additional degrees of freedom. This method was ® rst used

successfully by Carter and Handy (1986) in a FBR application and has been

used subsequently for calculating `potential-optimized ’ DVRs (Echave and

Clary 1992, Bramley and Carrington 1993). The major strength of the DVR

method is that it is easily amenable to such contraction techniques and leads to

the construction of very compact bases.

The variational method has been applied to investigate a range of tri-atomic and

tetra-atomic species. Recent examples are those reported by Carter et al. (1995),

Antikainen et al. (1995), Schwenke (1996), Koput and Carter (1997), Rosenstock et al.

(1998) and Schmidt et al. (1998) .

5.1.6. Vibrational self-consistent ® eld theory

An alternative to the full use of the variational method has been suggested by

Bowman (1978, 1986) and by Dunn et al. (1986) and Pulay (1990). This method is

analogous to the self-consistent ® eld (SCF) method used in electronic structure theory

and has a similar direct con ® guration interaction (CI) formalism. The method obtains

vibrational eigenstates iteratively and is not as computationally intensive as a full

matrix diagonalization. The method, however, is based on an expansion in

dimensionless normal coordinates and is suited to the case in which a perturbative

expansion of the potential energy surface about equilibrium is an appropriate

representation of the surface. In the case of a loosely bound hydrogen-bonded

complex, however, the appropriate choice of normal coordinates may be ambiguous,

and the very anharmonic nature of the potential may make convergence slow.

Dimensionless normal mode coordinates are also not well suited to cases where it is

di� cult to assign good quantum numbers to each eigenstate (Chang et al. 1986).

Further, it has been shown that the method is not suitable for describing the bending

vibrational motions in water (Csaszar and Mills 1997).

5.1.7. Scattering methods

Calculating bound-state vibrational eigenvalues can be viewed as a special case of

scattering calculations. Instead of one unbound degree of freedom all degrees of

freedom are bound, and formalisms used in scattering calculations may be applied to

vibrational problems. In the general scattering problem the bound modes are treated

variationally as in section 5.1.4, and the eigenvalues for the bound motions are

calculated as the value of the scattering (unbound) coordinate changes from zero to

in® nity. The scattering component of the overall wavefunction is a translational

function that exponentially decays at short distances where it is within a potential wall

and is asymptotically described by a plane wave as the interaction potential tends to

zero and the moieties separate. The total wavefunction for the system is calculated by

propagating from the classically forbidden region and matching boundary conditions

with the asymptotic solution.

If the system being studied is a bound molecule, the scattering coordinate describes

bound vibrational motion and the `scattered ’ component of the wavefunction

exponentially decays at large distance, where it is again within a potential wall. The

vibrational eigenvalues of a molecule can be calculated using a scattering formalism

by, for example, simultaneously propagating the wavefunction at a given scattering

energy from both classically forbidden regions (at short and large distances). The

propagated wavefunctions are examined for continuity in a classically allowed region
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Vibrational spectroscopy of the hydrogen bond 137

of the potential and the scattering energy is adjusted until the wavefunction has the

required continuity at this matching coordinate. This value of the scattering energy

then corresponds to a vibrational eigenvalue for the system. Bound-state wave-

functions may be calculated using either the time-dependent (Zhang and Zhang 1995,

W u et al. 1995 ; Hartke and W erner 1997, M ahapatra et al. 1998, Qui et al. 1998) or

the time-independent (Clary et al. 1997) Schro$ dinger equations. As noted above,

either a FBR or a DVR may be used to describe the bound degrees of freedom in any

of these calculations.

5.1.8. Quantum diŒusion M onte Carlo method

A ® nal non-variational method that is appropriate to weakly bound complexes is

the quantum diŒusion M onte Carlo (QDM C) method. This is a fully quantum

mechanical approach that, although initially developed in the context of electronic

structure calculations, may be applied to the vibrational problem. In the QDMC

method the Schro$ dinger equation is written in imaginary time s and resembles a

diŒusion equation with a growth (or decay) term. In this formalism the wavefunction

may be considered as a sum of transients and, if appropriate conditions are chosen, the

wavefunction will decay to zero at large s , with the longest-lasting transient

corresponding to the ground state (Suhm and Watts 1991). This approach was ® rst

applied to molecular vibrations in 1985 by M iller et al. (1985) and then by Coker and

W atts (1987), and a comprehensive review of the method has been provided by

Suhm and Watts (1991).

There are a number of disadvantages associated with QDM C. First, the statistical

errors in a QDM C calculation may be large. It is possible, however, to improve the

e� ciency of the QDM C algorithm signi® cantly by using importance sampling

(Reynolds et al. 1982, Suhm and Watts 1991). Another disadvantage is that, unlike

variational calculations, QDMC treats only a single state at a time, and this state

corresponds to the lowest-energy state compatible with the chosen boundary

conditions. Thus, excited-state QDMC calculations are non-trivial. Two methods

have been introduced to obtain excited-state energies. The ® rst involves a ® xed-node

algorithm, where a nodal surface is physically introduced into the calculation.

(Anderson 1975, 1976, 1980). The second involves orthogonalization, in which the

state of interest is constrained to be orthogonal to all previously determined states with

the same symmetry (Coker and W atts 1986, Quack and Suhm 1990, Sun and W atts

1990). It is also possible to gain information about excited states by probing the

transients in the wavefunction (Ceperley and Alder 1981, Ceperley and Bernu 1988,

Bernu et al. 1990, Blume et al. 1997a,b).

The ® xed node constraint is very eŒective in determining the lowest-energy excited

state of each symmetry. This makes it quite useful for systems with high symmetry, but

not as useful for systems with little or no symmetry. The orthogonalization constraint,

although conceptually simple, is computationally di� cult and can suŒer from a lack

of resolution. However, Gregory and Clary (1995) have developed a rigid-body

QDMC technique that can directly calculate tunnelling splittings in a single

calculation. Another approach suggested recently is the projection operator imaginary

time spectral evolution (POITSE) method (Blume et al. 1997a,b). This method

involves the calculation of imaginary time correlation functions that are then subject

to inverse Laplace transforms. Excited states are isolated using speci® c projection

operators. To date the method has only been applied to model systems (Blume et al.

1997a,b).
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138 Janet E . Del Bene and M eredith J. T. Jordan

The major advantage of the QDM C method is that it does not involve matrix

diagonalization and can therefore be applied to large systems. QDMC also does not

require explicit formulation of the wavefunction in terms of a basis representation.

This makes the method appropriate for systems with very ¯ oppy modes that may be

di� cult to characterize. Indeed, QDM C has been widely used to calculate vibrational

states and tunnelling splittings in van der W aals clusters, with many applications

focusing on the intermolecular modes of water clusters (Gregory and Clary 1995,

1996, Gregory 1998, Sabo et al. 1998).

5.2. Reduced dimensional calculations

The evaluation of the anharmonic A E H stretching frequency (proton-stretching

frequency) in a hydrogen-bonded complex is, in general, too complicated a problem to

be dealt with in its complete dimensionality. The complications lie both in the nature

of the vibrational calculation itself and in the ab initio elucidation of the potential

energy surface. It is possible, however, to perform anharmonic calculations on a

smaller number of active degrees of freedom. For example, the simplest possible

anharmonic calculation would be performed in the single dimension corresponding to

the proton-stretching mode. Two-dimensional calculations allowing for coupling

between the proton stretch and the heavy-atom (dimer) stretch are also feasible, as are

three- or four-dimensional calculations in which bending or inversion modes are

coupled to the proton and dimer stretches. Since it has been shown that coupling

between the proton and dimer stretching modes can be signi® cant in some complexes,

the method for treating the anharmonic two-dimensional vibrational problem will be

discussed ® rst. The ® rst two-dimensional anharmonic treatment of vibration per-

formed in this laboratory was carried out on BrH : NH
$

which, because of its small size,

made a thorough systematic study feasible (Del Bene et al. 1997a) .

The method used for the evaluation of two-dimensional anharmonic vibrational

frequencies in hydrogen-bonded complexes is that outlined by Wei and Carrington

(1992). For a collinear A ± B± C system the two-dimensional model vibrational

Hamiltonian is given by

H = –
ò #

2 l
"

¦ #

¦ R #
"

–
ò #

2 l
#

¥ #

¦ R #
#

1
ò #

m
B

¦ #

¦ R
"
¦ R

#

1 V(R
"
, R

#
)

where R
"

is the AB bond length, R
#

is the BC bond length, 1 } l
"

= 1 } m
A 1 1 } m

B
, 1 } l

#
= 1 } m

B 1 1 } m
c

and m
x

is the mass of the moiety X. In BrH : NH
$
, for example, A was

identi® ed as NH
$
, B as the hydrogen atom, and C as the bromine atom, with R

"
representing the distance from hydrogen to the centre of mass of NH

$
, and R

#
the

Br± H distance. In BrH : NH
$
, the hydrogen bond is exactly linear (C

$
v

symmetry),

and no bending motion is allowed in the two-dimensional treatment.

The method of choice for solving the two-dimensional nuclear vibrational problem

involves DVRs of the wavefunction. The wavefunction is expanded in internal

coordinates and Hamiltonian matrix elements are calculated at appropriate quad-

rature points. The DVR points themselves can also be adapted to the potential surface,

yielding a potential optimized DVR scheme. The strength of the DVR method is that

the potential matrix is always diagonal. If appropriate basis functions are used, the

kinetic energy matrix is also simple. This is the case for bond-stretching basis

functions, where the tridiagonal M orse basis is extremely useful because it yields

analytic tridiagonal Hamiltonian matrix elements.
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Vibrational spectroscopy of the hydrogen bond 139

The potential energy surface V(R
"
, R

#
) needed in the two-dimensional treatment of

vibration can be constructed from initial grids of ab initio data points using both

interpolating and extrapolating functions, as described for BrH :NH
$

(Del Bene et al.

1997a). Converged anharmonic frequencies can be obtained provided that su� cient

data points are available and that interpolations and extrapolations are done carefully.

Since this method describes a reduced potential energy surface rather than relying on an

expansion about a minimum on the surface, it is better suited to computing

anharmonic frequencies for hydrogen-bonded complexes, particularly if there is

signi® cant coupling between two modes. Such coupling has been shown to be

signi® cant if a second region on the surface is accessible in either the ground or the

® rst excited state of the proton-stretching mode.

In one dimension the calculation of the anharmonic frequency simpli ® es

signi® cantly. The one-dimensional Hamiltonian is

H = –
ò #

2 l

¦ #

¦ R #
1 V(R),

where the coordinate R parameterizes a particular slice along the potential surface and

l is the appropriate reduced mass. There are several one-dimensional slices that could

be used for the anharmonic calculation, but the one that is well de® ned and an obvious

choice is the curve generated from the normal coordinate displacement vector for the

proton-stretching band obtained from the harmonic treatment. The potential can be

de® ned by a one-dimensional spline interpolation through a discrete set of ab initio

energies calculated along the normal coordinate displacement vector, and polynomial

extrapolation of the potential outside the initial data set. As previously, tridiagonal

M orse functions can be used to expand the vibrational wavefunctions.

Hydrogen-bonded complexes contain additional vibrational degrees of freedom

that may in¯ uence their experimental spectra. Foremost among these is the hydrogen-

bond-bending mode. The bending coordinate for a pseudo-three-atom system ABC

with no overall rotational motion can be included in the Hamiltonian :

H (R
"
, R

#
, h ) = –

ò #

2 l
"

¦ #

¦ R #
"

–
ò #

2 l
#

¦ #

¦ R #
#

–
ò #

2 0 1

l
"

R #
"

1
1

l
#

R #
#

–
2 cos h

m
B

R
"

R
#
1 0 ¦ #

¦ h #
1 cot h

¦
¦ h 1

1
ò # cos h

m
B

0 1

R
"

¦
¦ R

#

1
1

R
#

¦
¦ R

"

–
¦ #

¦ R
"
¦ R

#

–
1

R
"

R
#
1

1
ò # sin h

m
B

¦
¦ h 0 1

R
"

¦
¦ R

#

1
1

R
#

¦
¦ R

"

–
1

R
"

R
#
1 1 V(R

"
, R

#
, h ),

where R
"

and R
#

are the A ± B and B± C bond lengths respectively, h is the ABC included

angle, 1 } l
"

= 1 } m
A 1 1 } m

B
and 1 } l

#
= 1 } m

B 1 1 } m
C
. As before, the bending motion

can be described by a DVR scheme, in this case using a basis of Legendre polynomials

evaluated at discrete grid points. This basis can be optimized to the potential by

considering a purely bending one-dimensional Hamiltonian. The required kinetic

energy matrix elements may be calculated using the properties of tridiagonal Morse

and Legendre polynomials. Similar methods may, in principle, be used to describe
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140 Janet E . Del Bene and M eredith J. T. Jordan

higher dimensionality or alternative curvilinear coordinates but, as the kinetic energy

becomes more complex, numerical evaluation of matrix elements may be necessary.

W ork in this area is currently under way in our laboratory. It should be noted that the

complexity of both the potential energy surface calculations and the calculation of

vibrational eigenvalues increases dramatically with increasing number of dimensions.

If n points are required for each dimension, then the number of single-point energy

calculations needed is nx , where x is the number of dimensions. Similarly, if k

optimized basis functions are used per dimension considered, the overall direct

product basis will contain k x -functions. Because the calculation of vibrational

eigenvalues requires the diagonalization of the Hamiltonian matrix, this calculation

scales approximately as N $ , where N is the total number of basis functions used. Thus

the scale of the problem increases enormously with increasing number of dimensions

treated quantum-mechanically.

6. Results of one- and two-dimensional anharmonic treatments of vibration

6.1. The BrH : pyridine spectrum

The calculated MP2 } 6-31 1 G(d, p) structure and the harmonic IR spectrum of

BrH :pyridine is that of a complex with a proton-shared hydrogen bond, and the

computed spectrum is in general agreement with the experimental argon matrix

spectrum (Del Bene et al. 1997c ; Sczcepaniak et al. 1997). Evident in both spectra are

multiple intense bands below 1800 cm -
" . Analysis of the normal coordinate dis-

placement vectors for these bands show that they arise from the Br E H stretching

vibration coupled to local intramolecular modes of the pyridine ring. However, it is

evident that there are diŒerences between the computed harmonic spectrum and the

experimental spectrum in both frequencies and intensities of strong bands, as evident

in ® gure 2. The cause of this discrepancy can be seen from ® gure 3 to be the harmonic

approximation. Figure 3 shows the parabola corresponding to the harmonic curve for

proton motion for the strong band at 1561 cm -
" in the computed spectrum, and the

potential curve for proton motion generated from the normal coordinate displacement

vector for this same band. The normal coordinate curve is obviously not parabolic.

The potential curve generated from the normal coordinate displacement vector for

the band at 1561 cm -
" was used to solve a one-dimensional nuclear vibrational

equation for the Br E H stretch. The anharmonic v = 0 and v = 1 energy levels are

shown in ® gure 3, together with the harmonic levels. The diŒerences are evident,

particularly in the energy of the v = 1 vibrational state. From these data, the ratio v
!

!
"

(anharmonic)} v
!

!
"
(harmonic) was computed to be approximately 0.72. This value

was used to adjust the proton-stretching force constant k(anharmonic)} k(harmonic)

= 0.72 # = 0.52. The three internal coordinate force constants associated with the

proton-stretching mode obtained from the harmonic calculation were then multiplied

by 0.52, and the harmonic spectrum of BrH :pyridine was recomputed. The

recomputed spectrum is shown in ® gure 4 (a) and can be compared with the

experimental matrix spectrum (® gure 4 (c)) and with the experimental integrated

intensity sum spectrum obtained by combining the integrated intensities of weaker

bands in the vicinity of a strong band into a single band (® gure 4 (b)). The agreement

among the three spectra is remarkable and emphasizes the importance of

anharmonicity of the Br E H stretching vibration in BrH :pyridine.
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Vibrational spectroscopy of the hydrogen bond 141

Figure 2. (a) Computed MP2 } 6-31 1 G(d, p) harmonic spectrum and (b) the experimental argon

matrix spectrum of BrH : pyridine extracted from the original experimental spectrum of
the matrix containing the pyridine and HBr monomers and the complex. Reprinted with

permission from Del Bene et al. (1997c). Copyright 1997 American Chemical Society.

Figure 3. Potential curve for proton motion for BrH : pyridine along the normal coordinate for
the band at 1561 cm -

" , with the v = 0 and v = 1 vibrational levels ( Ð Ð ). The harmonic

curve and vibrational levels ( ± ± ± ) are shown for comparison. Reprinted with permission

from Del Bene et al. (1997c). Copyright 1997 American Chemical Society.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



142 Janet E . Del Bene and M eredith J. T. Jordan

Figure 4. (a) Recomputed BrH : pyridine spectrum using the anharmonic proton stretching force
constant, (b) the experimental integrated intensity spectrum of BrH : pyridine and (c) the

experimental spectrum of this complex. Reprinted with permission from Del Bene et al.

(1997c). Copyright 1997 American Chemical Society.

6.2. The complexes XH : NH
$

The computed MP2 } 6-31 1 G(d, p) harmonic spectra of FH : NH
$

and BrH :NH
$

are compared with the corresponding experimental spectra obtained in argon matrices

in ® gure 5. W hile the computed and the experimental spectra of FH : NH
$

are similar,

there are signi® cant discrepancies between the computed and the experimental spectra

of BrH : NH
$
. The investigation of the structures and IR spectra of the series of

complexes XH :NH
$

for X = F, Cl and Br was pivotal to progress in understanding

anharmonicity and matrix eŒects in hydrogen-bonded complexes (Del Bene et al.

1997a , Del Bene and Jordan 1998). The structures and spectra of these complexes will

be discussed in turn.
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Vibrational spectroscopy of the hydrogen bond 143

Figure 5. (a) The computed and (b) the experimental argon matrix spectra of FH : NH
$

(top) and
BrH : NH

$
(bottom).
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144 Janet E . Del Bene and M eredith J. T. Jordan

Table 5. Harmonic and anharmonic frequencies for the dimer- and proton-stretching modes in

XH : NH
$

complexes at MP2 } 6-31 1 G(d, p).

Frequency (cm -
" )

FH : NH
$

ClH : NH
$

BrH : NH
$

Proton stretch

Harmonic 3296 2541 2006

Anharmonic
One dimensional 2949 2278 1533

Two dimensional 2832 1869 888

Experimental 3041a 1371b 729c

Dimer stretch

Harmonic 272 182 135

Anharmonic two dimensional 287 184 218

a From Johnson and Andrews (1982).
b From Barnes et al. (1984).
c From W. B. Person and K. Szczepaniak (1997, private communication).

Figure 6. The potential curve for motion along the normal coordinate displacement vector for
the harmonic proton stretching mode in FH : NH

$
, where the v = 0 harmonic and

anharmonic energies are identical : ( Ð Ð ), anharmonic vibrational energy levels ; ( ± ± ± ),

harmonic levels. (From Del Bene and Jordan (1998), with permission.)

6.2.1. FH : NH
$

The complex FH : NH
$

has C
$

v
symmetry, with a computed M P2 } 6-31 1 G(d, p)

intermolecular distance of 2.637 A/ and an F E H distance of 0.963 A/ . This complex has

a computed structure and IR spectrum consistent with the presence of a traditional
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Vibrational spectroscopy of the hydrogen bond 145

F E H I N hydrogen bond. The computed spectrum exhibits a single strong F E H

stretching band at 3296 cm -
" , 255 cm -

" higher than the experimental frequency

measured in an argon matrix. This diŒerence re¯ ects primarily the anharmonicity of

the F E H stretch in the HF monomer. The anharmonicity correction in HF is 176 cm -
"

experimentally (Mills 1974) and 181 cm -
" at M P2 } 6-31 1 G(d, p). The apparently

larger correction in FH : NH
$

suggests that the F E H stretch in the complex is slightly

more anharmonic than in the isolated HF molecule.

The anharmonic stretching frequencies obtained by solving one- and two-

dimensional vibrational equations on the M P2 } 6-31 1 G(d, p) surface for FH :NH
$

are reported in table 5. The one-dimensional frequency computed from the potential

curve generated from the normal coordinate displacement vector for the F E H stretch

in FH : NH
$

is 2949 cm -
" , which underestimates the experimental value by 92 cm -

" .

The F E H stretching frequency obtained from the two-dimensional treatment is

2832 cm -
" , which underestimates the experimental by 209 cm -

" . The diŒerence

between the one- and two-dimensional frequencies arises from the small coupling

between proton-stretching and dimer-stretching modes in the two-dimensional

treatment. Although the computed harmonic F E H stretching frequency is too large

and the anharmonic frequencies are too small, they are in reasonable agreement with

experiment. Further improvement would require that the calculations be carried out

at more sophisticated levels of theory.

Figure 6 shows the one-dimensional potential curve along the normal coordinate

displacement vector for FH : NH
$
, and the location of the v = 0 and v = 1 vibrational

energies. As evident from this ® gure, the harmonic and anharmonic zero-point

vibrational energies are essentially identical, while the v = 1 anharmonic level is

slightly lower than the harmonic. Both vibrational levels are contained within the

potential well. Figures 7 and 8 respectively show the square of the ground state ( v =

0) and of the ® rst excited state ( v = 1) vibrational wavefunctions for the proton

stretching mode superimposed on the FH :NH
$

MP2 } 6-31 1 G(d, p) surface. These

wavefunctions are centred over the potential minimum on the surface, and in both the

ground and the ® rst excited state the displacement of the proton from its equilibrium

position is not large. The one- and two-dimensional plots illustrate graphically why the

harmonic approximation works reasonably well for this complex.

6.2.2. ClH : NH
$

The computed structure of ClH : NH
$

has a traditional Cl E H I N hydrogen bond

and the computed harmonic spectrum is consistent with this structure, showing a very

strong band at 2541 cm -
" . The computed structure has a Cl E N distance R

e
of 3.130 A/

and is in agreement with the gas-phase structure reported by Legon (1993), with R
!

=

3.137 A/ . However, the experimental IR spectrum of this complex is dramatically

diŒerent from the computed spectrum. There are four strong bands between 1050 and

1450 cm -
" in the experimental IR spectrum that have been assigned to the ClH :NH

$
complex, although the speci® c nature of these is still open to discussion. Barnes et al.

(1984) assigned the band at 1371 cm -
" to the Cl E H stretch, and this assignment will be

used for comparison here.

The proton- and dimer-stretching frequencies obtained from one- and two-

dimensional treatments of vibration on the M P2 } 6-31 1 G(d, p) surface for ClH :NH
$

are reported in table 5. The square of the wavefunctions for the ground ( v = 0) and

® rst excited ( v = 1) states of the proton stretching vibration are shown superimposed

on the potential surface in ® gures 9 and 10 respectively. Although the ground-state
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146 Janet E . Del Bene and M eredith J. T. Jordan

Figure 7. The square of the ground state vibrational wavefunction for FH : NH
$

shown

superimposed on the MP2 } 6-31 1 G(d, p) surface in the hydrogen-bonding region. The
potential energy contours are at energies 0.0005, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02,

0.03 and 0.04 au above the global minimum. (From Del Bene and Jordan (1998), with

permission.)

Figure 8. Square of the wavefunction for the ® rst excited proton-stretching vibration of
FH : NH

$
superimposed on the MP } 6-31 1 G(d, p) surface. (From Del Bene and Jordan

(1998), with permission.)

wavefunction is centred over the well that describes the equilibrium complex, the

excited-state wavefunction is displaced, suggesting that the proton undergoes large-

amplitude motion in the v = 1 state as it samples the proton-shared region of the

surface. (In the ® gures, the proton-shared region is located in the upper left of the plot,

at shorter N E H and longer Cl± H distances.) The excited-state plot also suggests that

there is coupling between proton and heavy-atom motions. This is supported by the

computed expectation values of the Cl E H and Cl E N distances of 1.482 and 3.001 A/ in

the v = 1 state, compared with the ground-state expectation values of 1.346 and

3.134 A/ respectively. The coupling between the proton and dimer-stretching modes in
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Vibrational spectroscopy of the hydrogen bond 147

Figure 9. The square of the ground state vibrational wavefunction for ClH : NH
$

shown
superimposed on the MP2 } 6-31 1 G(d, p) surface in the hydrogen-bonding region. The

potential energy contours are at energies 0.0005, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02 and

0.03 au above the global minimum. (From Del Bene and Jordan (1998), with permission.)

Figure 10. Square of the wavefunction for the ® rst excited proton-stretching vibration of

ClH : NH
$

superimposed on the MP } 6-31 1 G(d, p) surface. (From Del Bene and Jordan

(1998), with permission.)

the excited state leads to a signi® cant diŒerence between the proton-stretching

frequencies obtained from one- and two-dimensional anharmonic treatments of

vibration. The anharmonic one-dimensional proton-stretching frequency computed

from the potential curve generated from the normal coordinate displacement vector is

2278 cm -
" , compared with the two-dimensional value of 1869 cm -

" . However, while

the two-dimensional proton-stretching frequency is signi® cantly lower than the

harmonic frequency of 2541 cm -
" , it is still about 500 cm -

" greater than the

experimental frequency.

The agreement between the two-dimensional anharmonic frequency and the

experimental frequency for the Cl E H stretch in ClH : NH
$

is expected to improve if a

higher level of theory were used, and if the eŒect of the matrix could be evaluated.
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148 Janet E . Del Bene and M eredith J. T. Jordan

(The matrix eŒect will be discussed in section 6.3.) It is noteworthy that the

computed M P2 } 6-31 1 G(d, p) harmonic and anharmonic stretching frequencies for

the HCl monomer are too high relative to experiment and that, for the hydrogen

halides HF, HCl and HBr, the diŒerence between experimental and computed

harmonic and anharmonic frequencies is greatest for HCl (Del Bene and Jordan 1998).

This observation prompted a reinvestigation of HCl and the ClH : NH
$

complex using

the larger aug´-cc-pVDZ basis set. (This basis is the aug-cc-pVDZ basis without diŒuse

functions on hydrogen atoms.) The computed harmonic and anharmonic M P2 } aug´-
cc-pVDZ frequencies for HCl are improved, and in better agreement with experiment.

W hile the M P2 } aug´-cc-pVDZ description of the equilibrium structure of ClH :NH
$

and the one- and two-dimensional plots for ClH : NH
$

obtained at MP2 } aug´-cc-

pVDZ are similar to the corresponding M P2 } 6-31 1 G(d, p) plots, the MP2 } aug´-cc-

pVDZ one- and two-dimensional proton-stretching frequencies are reduced to 1842

and 1566 cm -
" respectively. The two-dimensional proton-stretching frequency is now

only 200 cm -
" greater than the experimental argon matrix frequency.

6.2.3. BrH : NH
$

Two equilibrium structures of BrH :NH
$

exist on the M P2 } 6-31 1 G(d, p)

intermolecular surface. The more stable has a traditional Br E H I N hydrogen bond,

with a computed Br E N distance R
e

of 3.247 A/ , in agreement with the experimental

structure reported by Legon (1993) for which R
!

is 3.255 A/ . The second minimum has

a proton-shared Br I H I N hydrogen bond with a Br E N distance R
e

of 2.971 A/ .

However, this structure is a Born± Oppenheimer minimum that converts to the more

stable structure when the zero-point vibrational energy is added. The BrH :NH
$

surface is ¯ at in the hydrogen-bonding region, and a valley connects the two minima.

The complex with the traditional hydrogen bond has a computed harmonic IR

spectrum with a strong band at 2006 cm -
" . The proton-shared complex has two strong

very-low-frequency Br E H stretching bands at 414 and 387 cm -
" . Neither computed

spectrum is in agreement with the experimental argon matrix spectrum, which exhibits

a single strong Br E H stretching band at 729 cm -
" (Del Bene et al. 1997a) .

Plots of the square of the vibrational wavefunctions for the ground ( v = 0) and the

® rst excited ( v = 1) vibrational states of the proton-stretching mode obtained from the

two-dimensional treatment of vibration on the BrH :NH
$

surface are shown

superimposed on that surface in ® gures 11 and 12 respectively. The plot for the

vibrational ground state is dramatically diŒerent from the corresponding plots for

FH :NH
$

and ClH :NH
$
. The square of the ground-state vibrational wavefunction is

centred not over the potential well for the structure with the traditional hydrogen

bond, but in the valley connecting this structure to the structure with a proton-shared

hydrogen bond. Thus, both the traditional and the proton-shared regions of the

surface are sampled even in the ground vibrational state. Figure 12 shows the extent

to which the proton-shared region of the surface is further sampled in the v = 1 state.

As anticipated from ® gures 11 and 12, the anharmonic one- and two-dimensional

proton-stretching frequencies for BrH : NH
$

are signi® cantly diŒerent from each

other, and from the harmonic frequency. The one-dimensional anharmonic Br E H

stretching frequency obtained from the potential curve generated from the normal

coordinate displacement vector at the global minimum is 1533 cm -
" , which is about

500 cm -
" lower than the harmonic frequency. The strong coupling between proton and

dimer-stretching modes reduces this frequency in the two-dimensional treatment to

888 cm -
" , only 159 cm -

" higher than the experimental argon matrix value. The
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Vibrational spectroscopy of the hydrogen bond 149

Figure 11. The square of the ground-state vibrational wavefunction for BrH : NH
$

shown

superimposed on the MP2 } 6-31 1 G(d, p) surface in the hydrogen-bonding region. The

potential energy contours are at energies 0.0005, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02 and
0.03 au above the global minimum. (From Del Bene et al. (1997a), with permission.)

Figure 12. Square of the wave function for the ® rst excited proton-stretching vibration of
Br : NH

$
superimposed on the MP2 } 6-31 1 G(d, p) surface. (From Del Bene et al. (1997a),

with permission.)

remaining diŒerence between the computed two-dimensional proton stretching

frequency and the experimental argon matrix frequency may be due in part to the

eŒect of the matrix.

6.3. M atrix eŒects in XH : NH
$

complexes

Initial attempts to evaluate matrix eŒects on the structures and spectra of

hydrogen-bonded complexes were made by optimizing the structures of complexes in

the presence of rare-gas atoms, and then computing their harmonic vibrational spectra

(Del Bene et al. 1997a, b ; Del Bene and Jordan 1998). The results for the XH :NH
$
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150 Janet E . Del Bene and M eredith J. T. Jordan

Table 6. Selected MP2 } 6-31 1 G(d, p) distances and harmonic vibrational frequencies

and intensities for the proton-stretching mode in XH : NH
$

Complexes (HF, r = 0.926,

v = 4122 and I = 126 ; HCl, r = 1.270, v = 3112 and I = 26 ; HBr, r = 1.407, m = 2732 and
I = 12).

Complex
X E N
(A/ )

X E H
(A/ )

X E Pa

(A/ )
rb

(A/ )
m

(cm -
" )

I

(km mol-
" )

FH : NH
$

2.637 0.963 3296 1696

FH : NH
$
: 3Ne 2.635 0.964 2.802 3.304 3289 1680

FH : NH
$
: 3Ar 2.629 0.964 1.322 3.416 3274 1580

ClH : NH
$

3.130 1.309 2541 1537

ClH : NH
$
: 3Ne 3.112 1.312 3.321 3.258 2498 1620

ClH : NH
$
: 3Ar 3.117 1.311 2.252 3.529 2502 1521

BrH : NH
$

3.247 1.462 2006 1948

BrH : NH
$
: 3Ne 2.966 1.746 3.055 3.197 703 4513

BrH : NH
$
: 3Ar 2.966 1.741 2.532 3.544 716 4617

a X E P is the distance from the halide to the plane of the inert-gas atoms.
b r is the perpendicular distance from the X E N axis to the inert-gas atom.

Figure 13. The potential energy and anharmonic vibrational energy levels ( Ð Ð ) together with
the harmonic levels ( ± ± ± ) along the proton-stretching normal mode displacement vector

for BrH : NH
$
: 3Ar, parameterized by the H± Br distance. (From Del Bene et al. (1997a),

with permission.)

complexes are summarized in table 6. The complexes XH :NH
$
: 3Ar and

XH : NH
$
: 3Ne have C

$
v

symmetry, with the inert-gas atoms staggered with respect to

the ammonia hydrogen atoms. W hile the structures and spectra of the complexes of

HF and HCl with NH
$

are not signi® cantly changed by the presence of the rare-gas
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Vibrational spectroscopy of the hydrogen bond 151

Figure 14. MP2 } 6-31 1 G(d, p) potential energy curves along the normal coordinate for the

proton-stretching mode in BrH : NH
$
. Successive curves correspond to increasing ® eld

strength in the Br± H direction, beginning with zero ® eld at the top and incrementing the
® eld in steps of 0.0025 au. (From Del Bene et al. (1997a), with permission.)

atoms, these atoms have a dramatic eŒect on the BrH :NH
$

complex. Both

BrH :NH
$
: 3Ne and BrH :NH

$
: 3Ar have equilibrium structures with proton-shared

hydrogen bonds, and their computed harmonic spectra are typical of this hydrogen

bond type. The computed proton-stretching frequencies for these complexes are 703

and 716 cm -
" , in very good agreement with the experimental argon matrix value of

729 cm -
" . How can the presence of a few inert-gas atoms have such a dramatic eŒect

on the BrH : NH
$

complex ? The answer to this question lies in the nature of the

potential surface. As evident from ® gures 11 and 12, the BrH : NH
$

potential energy

surface is relatively ¯ at in the hydrogen-bonding region. The BrH : NH
$

structure with

the traditional hydrogen bond is a polar complex, with a computed dipole moment of

4.79 D. The complex with the proton-shared hydrogen bond is even more polar, with

a computed dipole moment of 8.40 D. It is not unreasonable to suggest that the argon

atoms surrounding BrH : NH
$

can be polarized by this complex and they, in turn, can

further polarize the complex, preferentially stabilizing the proton-shared structure.

Because the traditional and proton-shared regions of the potential surface are

energetically similar, what appears to be a dramatic matrix eŒect is not large from an

energy point of view. However, it should be emphasized that the good agreement

between the computed harmonic spectra of BrH : NH
$
: 3Ne and BrH : NH

$
:3Ar and

the experimental argon matrix spectrum of BrH : NH
$

is fortuitous. The potential

curve corresponding to the normal coordinate displacement vector for the band at

716 cm -
" in BrH : NH

$
: 3Ar is shown in ® gure 13 and is obviously anharmonic. The

anharmonic one-dimensional proton-stretching frequency obtained from this curve is

1030 cm -
" , 314 cm -

" greater than the harmonic frequency.
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152 Janet E . Del Bene and M eredith J. T. Jordan

Some insight into the eŒect of the presence of inert-gas atoms can be obtained by

examining ® gure 14. Plotted in this ® gure are M P2 } 6-31 1 G(d, p) potential curves for

proton motion obtained from the normal coordinate displacement vector for the band

at 2006 cm -
" in BrH :NH

$
as a function of external electric ® eld strength applied in

the Br E H direction (Del Bene et al. 1997a). It is apparent from ® gure 14 that the

introduction of a ® eld has both qualitative and quantitative eŒects, converting the

double minimum to a single minimum, and stabilizing the proton-shared structure

relative to the structure with a traditional hydrogen bond. Even the weakest ® eld of

0.0025 au alters the relative stabilities of the two complexes and, as the ® eld strength

increases, the single minimum moves toward a proton-shared and then an ion-pair

structure.

6.4. Charged complexes

The discussion of the structures and vibrational spectra of hydrogen-bonded

complexes has been limited thus far to neutral complexes. Hydrogen bonding may also

occur between a charged and a neutral species, giving rise to a complex that bears a net

positive or negative charge. The structures of charged complexes usually have short

intermolecular distances but, from a structural point of view, can have either

traditional or proton-shared hydrogen bonds. For example, the computed M P2 } 6-

31 1 G(d, p) structure of the complex NH
%

+ :H
#
O has a traditional N E H I O hydrogen

bond with an intermolecular distance of 2.725 A/ , and a harmonic spectrum typical of

this structure type with a strong band above 3000 cm -
" . (By comparison, the

pyrrole : H
#
O complex also has a traditional hydrogen bond, but the computed

intermolecular distance is 2.977 A/ at the same level of theory. The N E H stretching

band is typical for a complex with a traditional hydrogen bond, occurring at

3674 cm -
" ).

In contrast, the complex O
#
H

&

+ is stabilized by a symmetric proton-shared

O I H I O hydrogen bond, with a computed MP2 } 6-31 1 G(d, p) intermolecular

distance of 2.385 A/ , and a harmonic spectrum that exhibits several strong bands below

1800 cm -
" . (By comparison, (H

#
O)

#
has a traditional O E H I O hydrogen bond with an

O E O distance of 2.914 A/ . The hydrogen-bonded proton stretching frequency is

3788 cm -
" at the same level of theory.) Ojama$ e et al. (1995) have computed harmonic

frequencies and anharmonic proton- and dimer-stretching frequencies in O
#
H

&

+ based

on M P2 } aug´-cc-pVTZ energies using a DVR scheme. The computed O E O distance is

2.396 A/ , and the harmonic frequency for the proton stretch is 983 cm -
" . The

anharmonic stretching frequencies obtained from the one- and two-dimensional

treatments are higher than the harmonic frequency, at 1623 and 1275 cm -
"

respectively. The inadequacy of the harmonic treatment is again evident in this

complex.

6.5. The XHX - anions

The bihalide ions XHX - (X = F, Cl or Br) are the simplest hydrogen-bonded

complexes that are stabilized by proton-shared hydrogen bonds. Their small size and

high symmetry make feasible the calculation of potential energy surfaces at very

accurate levels of theory. The structures of these complexes and the computed

harmonic frequencies for the symmetric ( v
"
, heavy atom) and asymmetric ( v

$
, proton)

stretching modes and the bending ( v
#
) mode are reported in table 7 (Del Bene and

Jordan 1999). These calculations were carried out at M P2 } 6-31 1 G(d, p), M P2 } aug´-
cc-pVTZ, CCSD } aug´-cc-pVTZ and CCSD(T) } aug´-cc-pVTZ levels of theory. In

almost all cases, the optimized geometry was found to have D ¢ h
symmetry. (The

exceptions are ClHCl- and BrHBr - which have equilibrium structures of C ¢ v
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Vibrational spectroscopy of the hydrogen bond 153

Table 7. Calculated equilibrium geometries and harmonic frequencies for the symmetric

stretch ( m
"
), the bend ( m

#
) and the asymmetric stretch ( m

$
) of complexes XHX - .

XHX - Symmetry Level of theory

X E H

(A/ )
m
"

(cm -
" )

m
#

(cm -
" )

m
$

(cm -
" )

FHF - D ¢ h
MP2 } 6-31 1 G(d, p) 1.150 635 1380 1299

D ¢ h
MP2 } aug´-cc-pVTZ 1.114 633 1334 1280

D ¢ h
CCSD } aug´-cc-pVTZ 1.137 650 1368 1205

D ¢ h
CCSD(T) } aug´-cc-pVTZ 1.141 640 1347 1244

ClHCl- D ¢ h
MP2 } 6-31 1 G(d, p) 1.550 353 893 108

D ¢ h
MP2 } aug´-cc-pVTZ 1.555 345 843 629

C ¢ v
CCSD } aug´-cc-pVTZ 1.470,

1.668
174 828 761

D ¢ h
CCSD(T) } aug´-cc-pVTZ 1.556 344 831 426

BrHBr - D ¢ h
MP2 } 6-31 1 G(d, p) 1.710 209 767 575

D ¢ h
MP2 } aug´-cc-pVTZ 1.695 209 743 646

C ¢ v
CCSD } aug´-cc-pVTZ 1.613,

1.809

114 731 636

D ¢ h
CCSD(T) } aug´-cc-pVTZ 1.703 206 767 354

symmetry at CCSD } aug´-cc-pVTZ. However, the barrier between the two equilibrium

structures is negligible.) Since the nature of the XHX - potential energy surfaces in the

region of the global minimum varies considerably with the level of theory used, minor

very-low-energy features can have a signi® cant eŒect on calculated harmonic

frequencies, as evident from table 7. Because an anharmonic two-dimensional

treatment vibrationally averages over any low-energy features, the anharmonic

symmetric and asymmetric stretching frequencies are not as sensitive to the level of

theory used, as shown in table 8. Even the lowest level of theory considered (MP2 } 6-

31 1 G(d, p)) provides a qualitatively correct, and surprisingly accurate, description of

the stretching modes in these anions. The anharmonic vibrational frequencies for the

symmetric and asymmetric stretching modes discussed below are those obtained at the

highest level of theory, CCSD(T) } aug´-cc-pVTZ.

6.5.1. FHF - and FDF -

The CCSD(T) } aug´-cc-pVTZ symmetric stretching frequency for FHF - is

595 cm -
" , in agreement with the experimental gas-phase value of 583 cm -

" (Kawaguchi

and Hirota 1987). In a matrix the frequency of the symmetric stretching band is often

not directly observable, but is estimated as the algebraic diŒerence between the

combination band ( v
"

1 v
$
) and the fundamental frequency for the asymmetric stretch

( v
$
). The experimental gas-phase frequency of the symmetric stretch in FHF - obtained

as the algebraic diŒerence between the observed combination band ( v
"

1 v
$
) and the

observed v
$

fundamental, that is ( v
"

1 v
$
) – v

$
, is 516 cm -

" (Kawaguchi and Hirota

1987) compared with 531 cm -
" at CCSD(T) } aug´-cc-pVTZ. These values are lower

than those obtained for v
"

directly, that is the v
"

stretching frequency is dependent on

the observed v
$

manifold, an indication of the coupling between the symmetric and

asymmetric stretching coordinates on the potential energy surface.

While the computed harmonic frequencies for the asymmetric stretch in FHF - are

too low relative to experiment, the anharmonic frequencies are too high. The

CCSD(T) } aug´-cc-pVTZ frequency is 1476 cm -
" , 145 cm -

" greater than the ex-

perimental gas-phase value of 1331 cm -
" (Kawaguchi and Hirota 1987). M atrix values
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154 Janet E . Del Bene and M eredith J. T. Jordan

Table 8. Expectation values for the X E H distance in the ground vibrational state and

anharmonic and experimental frequencies for the symmetric ( m
"
) and asymmetric ( m

$
)

stretches and combination band ( m
"

1 m
$
) – m

$
for complexes XHX - .

XHX - Method
© X E H ª

(A/ )
m
"

(cm -
" )

m
$

(cm -
" )

( m
"

1 m
$
) – m

$
(cm -

" )

FHF - MP2 } 6-31 1 G(d, p) 1.167 593 1499

MP2 } aug´-cc-pVTZ 1.162 589 1485 527

CCSD } aug´-cc-pVTZ 1.155 603 1461 535
CCSD(T) } aug´-cc-pVTZ 1.158 595 1476 531

Experiment Gas phasea 583 1331 516

Ne matrixb 1379
Ar matrixb , c 1377

Ar matrixd 1364

ClHCl- MP2 } 6-31 1 G(d, p) 1.575 307 697 253
MP2 } aug´-cc-pVTZ 1.576 317 881 278

CCSD } aug´-cc-pVTZ 1.584 304 697 261

CCSD(T) } aug´-cc-pVTZ 1.584 308 776 267
Experiment Gas phasee 318 723

Ar matrix f ± i 696 259

Kr matrix f 663 253
Xe matrix f 644 249

BrHBr - MP2 } 6-31 1 G(d, p) 1.729 195 785 168

MP2 } aug´-cc-pVTZ 1.715 195 846 173
CCSD } aug´-cc-pVTZ 1.726 186 649 160

CCSD(T) } aug´-cc-pVTZ 1.726 188 731 165

Experiment Ar matrix j , k 728 164
Kr matrix f 687 159

Xe matrix f 646 152

a From Kawaguchi and Hirota (1987).
b From Hunt and Andrews (1987).
c From McDonald and Andrews (1979).
d From Ault (1979).
e From Kawaguchi (1988).
f From Ra$ sa$ nen et al. (1993).
g From Noble and Pimentel (1968).
h From Milligan and Jacox (1970).
i From Wright et al. (1976).
j From Bondybey et al. (1971).
k From Milligan and Jacox (1971).

for the asymmetric stretch vary from 1379 cm -
" in neon to 1377 and 1364 cm -

" in

argon. There may be several factors responsible for the diŒerences between the

computed and the experimental gas-phase values, but one that must be considered is

the neglect of coupling between bending and stretching modes in the two-dimensional

treatment. This coupling will be the subject of future studies.

Anharmonic eŒects on the vibrational frequencies may be understood in terms of

the pro® les of the potential energy surface taken along the symmetric and asymmetric

stretching coordinates. These are illustrated by the CCSD(T) } aug´-cc-pVTZ plots

shown in ® gure 15. It is apparent that the asymmetric stretch is dominated by the

repulsive nature of the potential wall. Indeed, the anharmonic calculations show that

the spacing between asymmetric stretch eigenvalues increases with increasing energy.
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Vibrational spectroscopy of the hydrogen bond 155

Figure 15. The CCSD(T) } aug´-cc-pVTZ potential surface for FHF - . The square of the

wavefunction for the ground vibrational state (top left) and for the v = 1 excited states of
the symmetric (top right) and asymmetric (bottom) stretches are shown superimposed on

the surface. The contours are at 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.02, 0.03 and 0.04 au

above the global minimum energy.

Thus, the anharmonicity constant c
$ $

is found to be positive. The symmetric stretch,

however, exhibits more typical behaviour with c
" "

negative. The relative insensitivity

of the anharmonic asymmetric stretching frequency to the level of theory can be

rationalized in terms of ® gure 15. Although the nature of the potential in the vicinity

of the equilibrium structure depends markedly on the level of theory used, the location

and curvature of the repulsive walls in the potential surface at short X E H bond lengths

are much less sensitive. The potential surfaces for ClHCl - and BrHBr - are qualitatively

similar to ® gure 15.

The computed and experimental anharmonic stretching frequencies for the

deuterium-substituted complex FDF - are given in table 9. Deuterium substitution has

only a small eŒect on the symmetric stretching frequency as the dominant motion is
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156 Janet E . Del Bene and M eredith J. T. Jordan

Table 9. Experimental and computed CCSD(T) } aug´-cc-pVTZ anharmonic frequencies

for the symmetric ( m
"
) and asymmetric ( m

$
) stretches and the combination band

( m
"

1 m
$
) – m

$
in the deuterated species XDX - .

XDX - Method

m
"

(cm -
" )

m
$

(cm -
" )

( m
"

1 m
$
) – m

$
(cm -

" )

FDF - CCSD(T) } aug´-cc-pVTZ 601 1023 546

Experiment Ar matrixa , b 965

Ar matrixc 969

ClDCl- CCSD(T) } aug´-cc-pVTZ 308 507 271

Experiment Ar matrixd ± f 463 267

Kr matrixg 438 255

BrDBr - CCSD(T) } aug´-cc-pVTZ 189 479 168

Experiment Ar matrixh , i 498 170

Kr matrixg 466 164
Xe matrixg 435 158

a From Hunt and Andrews (1987).
b From McDonald and Andrews (1979).
c From Ault (1979).
d From Noble and Pimentel (1968).
e From Milligan and Jacox (1970).
f From Wright et al. (1976).
g From Ra$ sa$ nen et al. (1993).
h From Bondybey et al. (1971).
i From Milligan and Jacox (1971).

that of the heavy atoms, but leads to a signi® cant decrease in the asymmetric stretching

frequency, as expected. The experimental argon matrix asymmetric stretching

frequency of FDF - is 414 cm -
" lower than that of FHF - . The computed

CCSD(T) } aug´-cc-pVTZ lowering is 453 cm -
" . For the asymmetric stretch the

computed ratio v
"
(FHF - ) } v

"
(FDF - ) of 1.44 is slightly larger than the harmonic value

of 1.414, and in agreement with the experimental argon matrix ratio of 1.42.

6.5.2. ClHCl- and ClDCl-

The gas-phase frequency of 318 cm -
" for the symmetric stretch in ClHCl- was

computed by Kawaguchi (1988) from the observed centrifugal distortion constant.

This value is in agreement with the computed CCSD(T) } aug´-cc-pVTZ frequency of

308 cm -
" . The reported experimental v

"
stretching frequencies obtained in inert

matrices were not observed directly, but again obtained from the algebraic diŒerence

( v
"

1 v
$
) – v

$
. Experimentally, these frequencies range from 249 to 259 cm -

" and are

signi® cantly lower than the gas-phase value obtained directly for v
"
. When the

symmetric stretching frequency is computed in the same way, the CCSD(T) } aug´-cc-

pVTZ value is 267 cm -
" . The anharmonicity of the potential surface is evident from

these results. The computed CCSD(T) } aug´-cc-pVTZ symmetric stretching frequency

v
$

is 776 cm -
" , about 50 cm -

" higher than the experimental gas-phase value of 723 cm -
"

(Kawaguchi 1988). Botschwina et al. (1988) have computed similar symmetric and

asymmetric frequencies of 308 and 768 cm -
" using the CEPA-1 method.

Table 9 reports the frequencies for the symmetric and asymmetric stretches in

ClDCl- . The computed CCSD(T) } aug´-cc-pVTZ frequency for the asymmetric stretch

is 507 cm -
" , 269 cm -

" lower than the computed value for ClHCl- . The corresponding
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diŒerence obtained from argon matrix measurements is 232 cm -
" . The computed

CCSD(T) } aug´-cc-pVTZ ratio v
"
(ClHCl - ) } v

"
(ClDCl- ) is 1.53, in good agreement with

the experimental ratio of 1.50, and much larger than the expected harmonic ratio of

1.414.

6.5.3. BrHBr - and BrDBr-

The computed and experimental anharmonic frequencies for the symmetric and

asymmetric stretches in BrHBr - are reported in table 8. The CCSD(T) } aug´-cc-pVTZ

frequency for the symmetric stretch is 188 cm -
" . The gas-phase frequency has not been

observed but has again been estimated in inert matrices as ( v
"

1 v
$
) – v

$
and found to

range from 152 to 164 cm -
" . The frequency calculated in the same way as ( v

"
1 v

$
) – v

$
is 165 cm -

" , in agreement with experiment. The experimental gas-phase frequency for

the asymmetric stretch is not available, but the inert matrix values range from 646 to

728 cm -
" . The CCSD(T) } aug´-cc-pVTZ frequency for the asymmetric stretch is

731 cm -
" .

The computed CCSD(T) } aug´-cc-pVTZ frequency for the asymmetric stretch in

BrDBr - is 479 cm -
" , similar to the inert matrix values which range from 435 to

498 cm -
" . The observed isotopic shift ratio v

"
(BrHBr - ) } v

"
(BrDBr - ) is 1.49 exper-

imentally in an argon matrix, and 1.53 at CCSD(T) } aug´-cc-pVTZ, both values clearly

exceeding the harmonic ratio.

7. Concluding comments

Is it possible to predict the nature of the experimental spectrum of a hydrogen-

bonded complex based on the computed structure of this complex and its computed

harmonic spectrum ? Can the experimental IR spectrum be used to infer the type of

hydrogen bond present ? Can the harmonic approximation provide reliable proton-

stretching frequency shifts in hydrogen-bonded complexes ? These questions cannot be

answered with a simple `yes ’ or `no ’ . From studies carried out thus far, there does

appear to be a relationship between the computed structure of a hydrogen-bonded

complex and its computed harmonic spectrum. Complexes with traditional hydrogen

bonds have computed spectra typical of this hydrogen bond type, while those with

proton-shared hydrogen bonds again have typical computed spectra characterized by

strong low-frequency proton-stretching bands. However, structure alone is not

su� cient to determine the IR spectrum of a hydrogen-bonded complex. IR

spectroscopy is a very sensitive probe of hydrogen bonding, but it is a probe not only

of the potential well in which the equilibrium structure resides, but also of the potential

energy surface accessible in either the v = 0 or the v = 1 vibrational state of the proton-

stretching mode. If a complex with a traditional hydrogen bond resides in a deep

potential well so that both the v = 0 and the v = 1 vibrational states are con ® ned to the

well, there will be a correlation between structure type and spectrum, and this

correlation will be seen both experimentally (between the gas-phase structure and the

IR spectrum obtained in an argon matrix) and theoretically (from the computed ab

initio structure and the harmonic IR spectrum, provided of course that an appropriate

level of theory is used for the calculations). In this case, the computed frequency shift

of the A E H band upon formation of the A E H I B hydrogen bond should be in

reasonable agreement with the experimental shift. On the other hand, if the potential

well for a complex stabilized by a traditional hydrogen bond is broad and relatively

¯ at, or if a second region of the surface is accessible in either the v = 0 or the v = 1

vibrational state of the proton-stretching vibration, both experiment and theory may
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give con¯ icting descriptions of the structure and spectrum of the complex. A harmonic

treatment of the proton-stretching vibration cannot describe the anharmonicity

inherent in the potential energy surface. In these complexes, matrix eŒects may also

have increased importance, since the matrix will preferentially stabilize the more polar

structure with a proton-shared hydrogen bond.

In complexes stabilized by proton-shared hydrogen bonds, it appears that both the

experimental and the computed harmonic spectra will exhibit strong low-frequency

bands associated with the proton-stretching vibration but, inevitably, there will be

diŒerences between the experimental and the computed frequencies and intensities of

these bands. The harmonic approximation again fails because of the inability of a

parabolic curve to describe adequately the ¯ atness of the potential surface in the

hydrogen-bonding region. If there is apparent agreement between the experimental

spectrum and the computed harmonic spectrum of a complex with a proton-shared

hydrogen bond, this agreement must be fortuitous. Anharmonicity eŒects will also

be evident in the experimental spectra of these complexes from the appearance of

combination bands and from the eŒects of deuterium substitution. Computed

anharmonic frequencies for both fundamental and combination bands are needed to

understand and reproduce qualitatively the most important features of the ex-

perimental spectra of these hydrogen-bonded complexes.
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